《函数的基本性质——增减性》说课稿
一、教学内容分析
《函数的增减性》是中职数学第二章第三节内容,是函数这一章的重要组成部分,函数这一章是中职数学的重点,并且有一定的难度,因此学好函数的性质显得十分重要。
二、学生情况分析
知识结构
学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。
能力结构
通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。
学习心理
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。
本班学生特点
本班为苹果园中学高一1班,为理科实验班,学生数学素养较好。
三、 教学目标分析
根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为:
1.知识与技能:
(1)从形与数两方面理解单调性的概念。
(2)初步掌握利用函数图象和单调性定义判断。
(3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。
2.过程与方法:
(1)通过对函数单调性定义的探究,渗透数形结合思想方法
(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。
3.情感态度价值观:
通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法。
四、教学重难点分析
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性描述性概念的形成。
五、教学方法分析
因此,根据教学内容和学生的认知、能力水平,本节课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。
六、教学过程
1.创设情境、引入新课
上山与下山的路线分析(上升、下降)
学生:分析路线曲线的特点(学生描述)
展示函数图象
学生:观察图像、描述图像特征。
教师:总结学生答案,纠正错误。
据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数?
结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。
学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导。
(二)初步探索、形成概念
学生在老师的指导下得出:
表征变化性态上的这种区别,是函数增减性.设函数y=f(x)在[a,b]上有定义.若随着在[a,b]上的x增加时函数值y也增加,那么把y=f(x)叫做是[a,b]上单调增加函数;反之,若随着在[a,b]上的x增加时函数值y反而减小,那么把y=f(x)叫做是[a,b]上单调减小函数.
在[a,b]上单调增加函数或单调减小函数,通称[a,b]上的单调函数,区间[a,b]叫做单调区间.
在此过程中要复习一下之前学习的区间的知识。
求函数的单调区间,主要通过观察描述。
我们来看图表示的函数.在整个区间[0,2]上函数并不是单调的,但在[0, π/2],[ π/2,3π/2],[3π/2,2π]上,函数却依次是单调增加、单调减小、单调增加的,即这三个区间是图给函数的单调区间.
在例题一的处理上要强调第三幅图函数在定义域内不是单调的,但是在“小区间”内是单调的。注意部分与整体的关系。同时在此回顾区间的概念。
在有些问题上可以适当降低难度,比如例二的第三小题:
y=1/x2.学生对于这一题的解决有很大的难度,本着从学生实际出发这一点,我们可以对它适当删减。其他题目注意区间的“闭”与“开”,以及与图像对应的关系。
在学生板书是应该注意促进学习成绩稍差的学生学习积极性,这样还能是大家更好的发现不足,及时弥补,不再犯同样的错误。
课堂小结可以让学生来完成,同时板书设计不宜太过复杂,要简洁明了,这样更有利于学生记忆,掌握所学知识。作业要尽量简单基础,不能让学生对于作业有种负担感,这样才能促使学生独立完成,减少学生抄袭作业的情况。
总之这节课主要还是以学生的认知结构,和学习现况出发,坚持“学生为主题、教师为主导、训练为主线”的思想。
相关阅读推荐:
› 人教中职数学基础版说课稿 函数y=Asin(ωx+φ)的图象