中职数学说课稿 合情推理(一)说课稿
教材分析
教材地位和作用 本节课是高中数学新课程《选修1-2》中第二章“推理与证明”的第一课。本章知识将通过生活实例和数学实例,介绍合情推理和演绎推理的含义,以及如何利用合情推理去猜测和发现一些新结论,探索和提供解决一些问题的思路和方向。数学发现的过程往往包括合情推理的成分,在人类发明、创造活动中,合情推理扮演了重要的角色。合情推理常用的思维方法是归纳和类比。本节课将着重介绍归纳推理。本节课的内容属于数学思维方法的范畴,教科书的编写意图是把过去渗透在具体数学内容中的推理的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识的使用它们。
新课程标准
教学目标 知识与技能:
1、结合已学过的数学实例,了解归纳推理的含义;
2、能利用归纳进行简单的推理;
过程与方法:
1、通过引例让学生体会并认识归纳推理在数学发现中的作用.
2、让学生利用归纳推理去猜测和发现一些简单的数学结论。
情感态度与价值观:使学生有意识地利用归纳推理来解决问题,感受归纳推理具有猜测和发现结论、探索和提供思路的作用,从而让学生养成良好的思维习惯,培养学生探索和创新意识。 根据本节教材特点和课程标准的要求,结合学生认知结构特点,确定上述教学目标。
教学
重点
难点 重点:通过具体实例了解归纳推理的含义,能利用归纳进行简单的推理.
难点:用归纳进行推理,作出猜想. 由于学生的观察和归纳推理的能力有欠缺,在用归纳进行推理,作出猜想过程中会出现困难.
学情
分析 授课班级08-14班为美术特色班。学生的数学基础普遍较差,归纳推理能力偏弱。但由于本课着重介绍思维方法,对学生原有的数学知识基础要求不高,因此学生接受起来会相对容易一些。
学生可能存在的困难:
1、寻找规律时欠缺方法;
2、不能准确的用数学语言将发现的规律表述出来。
教学设计:
一、情境引入:1、引言: 当我们开始认识这个世界时,数学就和我们在一起了。那么,这些知识是如何产生和发展的呢?其实每一个数学知识的诞生,最初的发现大多是带有偶然性的,然后通过大胆的猜测,反复的推理与论证,最终才得到正确的结论。也就是说猜测、推理与证明是我们发现新知识,获得新结论的重要手段。
2、本章知识结构:
教法分析 本科采用启发引导式教学,并结合多媒体课件辅助教学。
学法分析 由于本课要让学生充分体会归纳推理的思维方法,在课上我将让学生经历自己思考—表述—纠错—再思考—归纳的过程,我在适当的时候做引导。
教 学 流 程
→ → → →
设计意图:由于本课是本章的起始课,通过引言和本章知识结构图可让学生先对新的一章知识有个整体的了解。
3. 哥德巴赫猜想:
师生活动:(学生活动)计算: 3+3=6, 5+3=8, 5+5=10, 5+7=12, 7+7=14, 13+3=16, 11+7=18, 13+7=20,
观察6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7, 16=13+3, 18=11+7, 20=13+7, ……,
(教师活动)提出问题:通过对上面几个等式的观察,你能的出什么结论?
猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和.
这就是著名的哥德巴赫猜想,1742年哥德巴赫给欧拉写信提出这个,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.
设计意图:哥德巴赫猜想的提出过程是一个典型的运用归纳推理的过程,在这里我让学生充分的经历和感受此猜想的提出过程,可以让他们从中体会和提炼出归纳推理的含义。
另一方面,通过让学生经历数学家的思维过程,可以让他们体会数学家的创新精神,渗透数学的文化价值,同时激发学生学习数学的热情。
4. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.
二、探索新知:
1. 教学概念:
由引例得出归纳推理的定义
① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.
② 归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?
(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?
③ 讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?
(ii)归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)
2. 教学例题:
出示例题:例1、观察等式:1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
由上述事实你能得出怎样的结论?
师生活动:问题:1、加数的个数与和之间有怎样的关系?
2、加数具有什么特点?
3、观察右图,你能的出等式的几何意义吗?
猜想:
前n个连续正奇数的和等于n的平方,即1+3+ ... +(2n-1)=n2
动手练一练:练习1
1.观察图中 ○ 和 △ 的个数,猜想第n个图形中○和△的个数。
2.试求第几个图中○和△的个数相等?
例2 已知数列 的第1项 ,且 ,试归纳出这个数列的通项公式.
师生活动:分析思路:试值n=1,2,3,4 → 猜想
引导学生反思:利用归纳推理的思想解决问题的过程是:由特殊到一般。
设计意图:本例是让学生利用数列的一个一般结论—递推公式,写出数列的前几项,通过观察,归纳出数列的通项公式。本例归纳过程较简单,但学生可能对递推公式的用法及通项公式的定义不清楚,教师可在此处加以引导。
3. 师生小结:①归纳推理的要点:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.③归纳推理的作用:具有猜测和发现结论、探索和提供思路的作用
③强调:归纳推理有猜想的成分,因此推理所得的结论未必正确,有待证明。
费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对 , , , , 的观察,发现其结果都是素数,于是提出猜想:对所有的自然数 ,任何形如 的数都是素数. 后来瑞士数学家欧拉,发现 不是素数,推翻费马猜想.
设计意图:让学生认识到合情推理的结论未必可靠,数学结论的正确性必须通过逻辑推理的方式加以证明才能得到确认。引导学生无论在学习和做事方面都要养成一个严谨的好习惯。
三、巩固练习:1. 练习:教材P38 1、2题.
四、布置作业:教材P44 习题A组 1、2、3题.
点击免费下载含有框图、表格、图形、数学符号的完整WORD文档。
相关阅读推荐:
› 人教中职数学基础版说课稿 函数y=Asin(ωx+φ)的图象