分数乘以整数
【教学目的】使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
【教学重点】让学生理解算理,掌握计算法则
【教学过程】
一.复习。
1.5个12是多少?
用加法算:12+12+12+12+12
用乘法算:12×5
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2.计算:
问:这两个算式有什么特点?应该怎样计算?
教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。
通过将算式:改写成乘法算式,引出课题。
二、情境引入新课
1.教师出示例题图示:
例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?
(1)首先让学生分析题意,试着描述场景图。
(2)学生分组讨论:“人跑一步的距离相当于袋鼠跳一下的”是什么意思?如何理解“相当于”?
师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)
(3)如何解决这个问题?
学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)
教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。
师:我们观察加法算式的特点,3个加数有什么特点?(3个加数相同)我们求3个相同加数的和还可以怎样列式?
引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。
强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。
2.延伸强化
教师出示例题2:,让学生先计算,再讨论。
问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?
教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。
教师板演约分的书写格式。(把两个可以约分的数划去,分别在它们的上下方写出约分后的数。)
三、练习巩固
完成课后习题:做一做。
在计算练习1时,教师检查学生掌握的情况并提醒:计算前先观察分数的分母与整数是否可以约分,养成先约分再计算的习惯。
练习3:1只树袋熊一天大约吃(1)的桉树叶,只树袋熊一星期能吃多少千克桉树叶?
(1)学生读题,分析题目的意思,注意强调“10只”,“一星期”的含义。可以将问题化为:
“10只树袋熊一天吃多少千克桉树叶?10只树袋熊七天吃多少千克桉树叶?”或者“一只树袋熊七天吃多少千克桉树叶?10只树袋熊七天吃多少千克桉树叶?”
这样,学生可以先算1只树袋熊一星期大约能吃多少千克桉树叶。再算10只树袋熊一星期大约能吃多少千克桉树叶。也可以先算10只树袋熊一天大约能吃多少千克桉树叶。再算10只树袋熊一星期大约能吃多少千克桉树叶。
(2)说说你的解答思路,怎样算可以使计算简便?如果学生列出连乘算式,说明也可以先约分,再计算。
(3)让学生板演,教师再次强化解题约分过程。
四、课堂小结。