|
|
【教学目标】 “一元二次方程的根与系数的关系”是初中数学九年级上册第四章内容,但不是课标要求范围的内容,教学要求是“阅读材料”。由于该内容对学生在高中数学学习中的作用非常重要,初中老师一般都要带领学生认真阅读,对一元二次方程的根与系数的关系产生的背景作一些介绍,最多对其应用适当练习即可。但吴敏老师考虑到“一元二次方程的根与系数的关系”(韦达定理)是一个很好的数学探究问题,因此,将之定位为定理的探索→再发现→证明→应用,充分展示从问题出发寻找解决问题的途径和对策,定位准确、立意新颖、符合认知规律,完全印证了本届百花奖竞赛的主题。 吴老师确定的教学目标有三点:一是经历“一元二次方程的根与系数的关系”的探索过程,培养学生观察、归纳、猜想、论证能力;二是掌握一元二次方程的根与系数的关系,能进行简单应用;三是体验归纳猜想思想、特殊与一般思想、整体思想等数学思想方法。 其中前两条是知识与技能、过程与方法层面的,是数学学习的常规要求,也是数学教学呈现在学生和评委面前的显性目标;第三条是隐性目标,从价值观角度看更重要,渗透的是数学的精髓——数学思想方法,对学生后续数学学习作用深远。 【“从问题到对策”的评述】 本节课自始至终从问题出发,引导学生探讨解决问题的对策,始终围绕问题,寻求问题解决的途径。教学过程高潮不断,亮点纷呈,具体如下: 首先,问题导入:“若 是一元二次方程 的两个实数根,求 的值.”学生都是先求根再代入求值,不仅繁琐,而且易错(板演的学生就错了),教师提出“有没有既简便又不易出错的方法解决此问题?”实际上直奔从问题到对策的主题,充分激发出学生的求知欲望。 其次,教师并没有马上解决以上问题,而是将问题高挂,进入本节课的最重要阶段——让学生通过三个一元二次方程根与系数的观察,猜想它们之间存在什么样的关系,这是本节课的难点之一。学生在观察、归纳、猜想过程中,有的深思,有的兴奋,有的一筹莫展,有的得出了结论,有的甚至得出了其它结论,可见学生思维活跃,发散性数学思维得到很好的发展。 再其次,在教师的带领下,从逻辑上证明结论、用具体方程验证结论,完善问题解决的过程,充分显示出数学研究的特性——严密的逻辑性,培养学生解决数学问题良好习惯。 接下来,回到问题导入中的问题,让学生体验一元二次方程的根与系数的关系的价值、体验成功解决数学问题的喜悦。 最后,通过例题与习题学会灵活运用新学的知识和方法解决新问题,达到学以致用的目的。 在整个教学过程中,有几个值得倡导的地方: 1.自主学习、合作交流体现出新课标理念。传统教学是老师讲学生听、老师写学生记、老师问学生答,随处可见的是,师生互动、生生互动的场面,本节课上学生成了真正课堂学习的主人。 2.数学是思维的体操得到充分展示。数学课的特点是思考,本节课上学生一直都地思考问题,一直都在想方设法地探求解决问题的对策,数学思考特色鲜明。 3.创新是课堂教学追求的目标。虽然学生在一节课上不大可能有什么重大发现,但通过对原有的结论进行探究,在探究的过程中让学生学会观察、归纳、猜想、论证,从而对结论再发现就是培养学生创新的重要手段。本节课对“一元二次方程的根与系数的关系”的探究过程就是对学生进行创新思维培养的很好体验。 【不足之处分析】 1.缺少教学重要环节的点评与小结。 2.课堂应变能力有待提高。有两处:学生得出 的猜想是不严密的需要加绝对值,教师没有注意就过去了;学生对 的另一种解法是一种很好的方法,教师没有肯定,对学生创新思维的培养不利。 【改进方案探讨】 当一个问题得到解决以后,教师应站在一定的高度简要点评和小结,使解决问题的对策得以显现,让学生更加清晰,解决问题的对策得以升华。 教师在加强教学基本功,特别是应变能力要提高,课堂上思想要高度集中,对学生出现的与自己预设不同的情况要认真思考、正确判断、正面回应。
|
|