|
|
猜测、观察、类比、联想 评《比的基本性质》一课 陈老师充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。 1.创设情境,让学生产生探究欲望。 苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。所以,应该在课堂教学中创设情境,把问题隐藏在情境之中,形成悬念,引起学生迫不及待地探索和研究。这样不仅能激发学生学习数学的兴趣,同时还能给学生提供自主探索的机会,让学生在自主探索中建构数学知识。如《比的基本性质》一课,传统的教学是:出示一组分数3/4、6/8、9/12,让学生发现3/4:6/8:9/12,接着把分数转化成比3:4=6:8=9:12,归纳出比的基本性质,接着是一层层的巩固练习。这个过程是老师讲,学生听,被动地接受。不说让学生感兴趣,就是对其内容,学生也是一知半解。在应用时,会出现比的前项和后项乘的不是同一个数,甚至会出现前项乘后项的笑话。这种以接受知识为目的教学显然不适应培养时代新人的要求,而陈老师在设计这节课时,没有采用教材中的例3进行引入,而是让学生先填表格复习比和除法,分数的关系,问学生:通过填这个表你发现了什么?生:比和分数、除法有很密切的联系,它们很相似:再出示:18÷6=( )÷2=24÷( )、15/20=( )/4=9/( )=( )/6。问:这两题是根据什么规律和性质来做的?生:商不变的规律和分数的基本性质。师引导:在除法中有商不变的规律,在分数中有分数的基本性质,那么比有没有类似的性质呢?通过这样的引导,紧紧抓住了学生的心。他们很想弄清楚:比有没有类似商那样的规律和分数那样的性质,使他们产生强烈的探究欲望。 2.猜想验证,让学生感受探究过程。 在激发学生认知需要和探究欲望后,怎样才能让学生的思维卷入知识发现的过程呢?这时教师要起到引导者的作用,引导学生自由思考,作出各种猜想,对猜想提出验证的方法。然后小组合作从不同的角度验证猜想,最后借助实物投影展示学生的研究思路与成果,通过这一系列的探究性的学习活动,让学生感受探究过程。这样不仅为学生自主发展提供了条件,让学生学到科学探究的方法,还培养了学生主动获取知识的能力、团结协作的精神,同时学生在活动中互相启发,产生灵感,使不同层次的学生都得到相应的发展。 如《比的基本性质》一课中,学生提出:比肯定也有类似除法那样的规律和分数那样的性质。老师引导大家讨论怎样验证。结果A组的意见是:我们想用一个比的前项和后项同时乘或除以相同的数,看它的比值变不变B组的意见是:我们想用一个比的前项和后项同时乘一个分数或者一个小数,看它的比值变不变。C组的意见是:我们想把不同的比的前项和后项乘或除以相同的数,看它们的比值变不变。老师肯定了大家的这些想法好,要求同学们分组试试。学生反应十分活跃,小组成员分工合作,你写一个比来验证,我写一个比来试试,有的故意把数写得很大,有的用。来乘……几分钟后,学生们争先恐后地拿出自己的验证结果,同时也提出了验证过程中的疑问。 在整个活动过程中,都充分发挥了学生的潜能,让他们根据白己的需要实验验证,让学生感受知识产生和发展的过程,使学生在这个过程中完成新知的建构。 3.整理归纳,让学生体验成功。 归纳是课堂教学的一个重要组成部分,很多知识都可以让学生自己去归纳。通过归纳,能提高学生的综合概括能力,充分发挥学生的主体作用,发掘学生的聪明才智,提高学生的数学素质。 如在《比的基本性质》一课中,把学生验证的结果一一展示后,陈老师引导学生比较,比的这个特性是否具有普遍性,比的这个特性怎样归纳呢?有的说:比的前项和后项同时乘相同的数,比值不变。有的说:还应该加同时除以相同的数,比值不变。有的说:这还不完整,应加上0除外……这样有效地让学生通过分析、整理、归纳等科学研究方法得出结论,让学生体验到数学学科的严谨性,从而提高学生的分析概括能力、逻辑推 理能力。得出结沦后,告诉学生:你们太聪明了,发现的数学规律叫比的基本性质、学生感到获得了很大成功,信心十足,不仅增强了学习数学的兴趣,更让学生掌握主动获取数学知识的方法,学到主动参与数学实践的本领。 总之,“比的基本性质”是学生学习“商不变的规律”和“分数的基本性质”后安排的教学内容、由于比和分数、除法的关系,很容易让学生联想到比也应该有类似的性质,这为学生发现问题、产生探究欲望奠定了基础。同时由于上述学习内容的铺垫,为学生自主探究“比的基本性质”这一新的学习任务创造了必要条件。所以,我没有沿袭以往的教学思路及教材束缚,而是立足于学生已有的数学知识与经验,用探究性的学 习方法,让学生在探究过程中建构新知识,解决新问题,获得新发展。
|
|