|
|
组合图形面积的计算反思 教学内容:人教版数学第九册92页和93页 练习十八 教学反思: 课后细想这节课,感觉也不难呀,除了计算步骤稍多点之外其实并无太大知识障碍。可这节课的教学让我倍感失败。 一、例1第二种算法教学失败。 教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了“可以把它分成两个完全一样的梯形”,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生交谈中了解到“其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。” 我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢? 【再教设计】 再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。 二、作业的格式教学失败。 教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是“各具特色”,很不统一。在这一失误中,让我常常体会到“其身正,不令而行;其身不正,虽令不从。” 其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了“÷2”均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。 【再教设计】 要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推行起来可能会顺畅一些吧
|
|