|
|
教案《点到直线的距离公式》 一、教学目标 1.知识教学点 点到直线距离公式的推导思想方法及公式的简单应用. 2.能力训练点 培养学生数形结合能力,综合应用知识解决问题的能力、类比思维能力,训练学生由特殊到一般的思想方法. 3.知识渗透点 由特殊到一般、由感性认识上升到理性认识是人们认识世界的基本规律. 二、教材分析 1.重点:展示点到直线的距离公式的探求思维过程. 2.难点:推导点到直线距离公式的方法很多,怎样引导学生数形结合,利用平面几何知识得到课本上给出的证法是本课的难点,可构造典型的、具有启发性的图形启发学生逐层深入地思考问题. 3.疑点:点到直线的距离公式是在A≠0、B≠0的条件下推得的.事实上,这个公式在A=0或B=0时,也是成立的. 三、活动设计 启发、思考,由特殊特殊推导一般,逐步推进,讲练结合. 四、教学过程 (一)提出问题 已知点P(x0,y0)和直线l:Ax+By+C=0,点的坐标和直线的方程确定后,它们的位置也就确定了,点到直线的距离也是确定的,怎样求点P到直线l的距离呢? (二)构造特殊的点到直线的距离学生解决: 思考题1:求点P(2,1)到直线L:x-y+1=0的距离. 学生可能寻求到这几种解法: 方法1:由定义求出垂足,转化为两点间距离求解。 方法2:利用最值结论,求两点距离最小值。
|
|