|
|
小学五年级奥数下册教案:容斥原埋 在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑.如:A={五(1)班全体同学}.我们称一些事物的全体为一个集合.A={五(1)班全体同学}就是一个集合。
例1 B={全体自然数}={1,2,3,4,…}是一个具体有无限多个元素的集合。
例2 C={在1,2,3,…,100中能被3整除的数}=(3,6,9,12,…,99}是一个具有有限多个元素的集合。
集合通常用大写的英文字母A、B、C、…表示.构成这个集合的事物称为这个集合的元素.如上面例子中五(1)班的每一位同学均是集合A的一个元素.又如在例1中任何一个自然数都是集合B的元素.像集合B这种含有无限多个元素的集合称为无限集.像集合C这样含有有限多个元素的集合称为有限集.有限集合所含元素的个数常用符号|A|、|B|、|C|、…表示。
记号A∪B表示所有属于集合A或属于集合B的元素所组成的集合.就是右边示意图中两个圆所覆盖的部分.集合A∪B叫做集合A与集合B的并集.“∪”读作“并”,“A∪B”读作“A并B”。
|
|