|
|
向量的加法运算及其几何意义 授课类型:新授课 课时安排:1课时 教材分析:本节课取自普通高中课程标准实验教科书数学4(必修•人民教育出版社A版)第二章2.2.1,向量是近代数学中重要和基本的数学概念,它既是代数的对象,又是几何的对象。向量作为代数对象,可以像数一样进行运算。作为几何对象,向量有方向,可以刻画直线,平面,切线等几何对象;向量有长度,可以解决有关几何对象得长度,面积,体积等几何度量问题。向量由大小和方向两个因素确定,大小反映了向量数的特征,因此,向量是集数,形于一身的数学概念,是数学中数形结合思想的典型体现。同时也是重要的物理模型,平面力场,平面位移以及二者混合产生的做功问题,都可以用向量空间来刻画和描述。向量不仅沟通了代数与几何的联系,而且体现了近现代数学的思想,它在高中数学中的重要地位是不言而喻的。 学生情况:学生已经通过2.1的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量,在学习物理的过程中,已经知道位移,速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则。为本课题的引入提供了较好的条件。 三维教学目标: 一、教学知识目标: ⑴掌握向量加法的定义 ⑵会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量
|
|