|
|
1.1 正数和负数(1) 一、教学目标 1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念; 2、会区分两种不同意义的量,会用符号表示正数和负数; 3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣. 二、教学重点与难点 重点:两种相反意义的量. 难点:正确区分两种不同意义的量. 三、教学过程 (一)创设情境 上课开始时,通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗? 师:今天我们已经是七年级的学生了,我是你们的数学老师.我们的班级是七(3)班,有35个同学,其中男同学有17个,占全班总人数的49%.... 问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生思考) (交流后) 师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数). 问题2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流. 学生交流后,教师归纳:以前学过的数已经不够用了,有时需要一种前面带有“-”号的新数. (二)提出问题,探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解. 教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流. 这阶段主要是让学生学会正数和负数的表示. 强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量. (三)举一反三,拓展思维 经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维. 问题4:请同学们举出用正数和负数表示的例子. 问题5:你是怎样理解“正整数”“负整数”“正分数”和“负分数”的呢?请举例说明. (四)巩固练习 教科书第5页练习. (五)小结 围绕下面两点,师生共同交流: 1、由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了; 2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”. (六)作业 作业本(1)第1页 1.1正数和负数(2)
一、教学目标 1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念; 2、利用正负数正确表示相反意义的量(规定了向指定方向变化的量); 3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣. 二、教学重点与难点 重点:深化对正负数概念的理解. 难点:正确理解和表示向指定方向化的量. 三、教学过程 (一)知识回顾和深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种相反意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么相反意义的量就用负数来表示. 这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题l:有没有一种既不是正数又不是负数的数呢? 学生思考并讨论. (数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,根据学生的讨论情况作些启发和引导) 例如:在温度的表示中,零上温度和零下温度是两种相反意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和一5℃,这里+7℃和一5℃就分别称为正数和负数. 那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数. 问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? (二)问题解决 问题3:教科书第6页例题 说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这种描述在实际生活中有广泛的应用,应予以重视,教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量. 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页). 类似的例子很多,如: 水位上升-3m,实际表示什么意思呢? 收入增加-10%,实际表示什么意思呢? 等等. 可视教学中的实际情况进行补充. (三)巩固练习 教科书第6页练习 (四)阅读与思考 教科书第8页. (五)小结 以问题的形式,要求学生思考交流: 1、引入负数后,你是怎样认识数0的,数0的意义有哪些变化? 2、怎样用正负数表示具有相反意义的量? (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.) (六)作业 作业本(2)第1页
|
|