说课吧首页 阅览说课吧说课稿数学说课稿九年级数学说课稿> 正文

锐角三角函数_正弦说课教案

本站微信

《锐角三角函数》教学设计

锐角三角函数(1)——正弦
学习目标:
1. 理解锐角正弦的意义,并会求锐角的正弦值;
2 掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;
3 经历锐角正弦的意义探索的过程,培养学生 观察分析、类比归纳的探究问题的能力;
学习重点:
理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.
学习难点:
当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。
导学过程:
一、自学提纲:
1.在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB

2.在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC

二、创设情景,提出问题:利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
三、自主学习:
自主阅读课本74页中的问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数30°,为使出水口的高度为35m,那么需要准备多长的水管?
思考1:如果使出水口的高度为50m,那么需要准备多长的水管? ; 如果使出水口的高度为am,那么需要准备多长的水管? 。
结论:直角三角形中,30°角的对边与斜边的比值 。
思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?


结论:直角三角形中,45°角的对边与斜边的比值 。
四、教师点拨:
从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当
∠A=30°时,∠A的对边与斜边的比都等于1/2,是个固定值;当∠A=45°时,∠A的对边与斜边的比都等于√2/2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?
探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,
∠A=∠A′=a,那么它们的对边与斜边的比有什么关系.你能解释一下吗?
因为∠C=∠C′,∠A=∠A′,
所以△ABC∽A′B′C′
所以BC/ B′C′=AB/ A′B′
所以根据比例的基本性质可以得到BC/ AB= B′C/ A′B′
结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比 。
正弦函数概念:
规定:在Rt△ABC中,∠C=90°,
∠A的对边记作a,∠B的对边记作b,∠C的对边记作c。
在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,
记作sinA,即 sinA=BC/ AB
例如,当∠A=30°时,我们有sinA=sin30°= 。
当∠A=45°时,我们有sinA=sin45°= 。
五、合作交流,自主展示:
学生阅读课本例1 如图,在Rt△ABC中,∠C=90°,根据图中数据,求sinA和sinB的值.
小组成员交流 ,扫除障碍。
随堂练习
1:课本第77页练习。
2、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB ( )
(2)sin60°=sin30°+sin30° ( )
3、将Rt△ABC各边扩大100倍,则sinA的值( )
A.扩大100倍 B.缩小100倍 C.不变 D.不确定
4、平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。
5、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的长。
五、课堂小结:
1 通过本节课的学习,你学会了哪些知识;
2 通过本节课的学习,你最大的体验是什么;
3 通过本节课的学习,你掌握了哪些学习数学的方法?
4 sinA能为负吗?
5你能比较sin45°和sin30°的大小吗?

六、自主拓展(提高升华)
1、必做题 :课本习题28.1第1、2、题;
(只做与正弦函数有关的部分)
2、选做题:已知:在Rt△ABC中,∠C=90°,sinA=1/3,周长为60,求:斜边AB的长.
 

相关阅读推荐:

锐角三角函数复习课评课稿

锐角三角函数评课稿

锐角三角函数_正弦说课稿

锐角三角函数_正弦说课教案

锐角三角函数说课稿

[]
分享到:
看过本文的人还看过

说课视频