3.8 函数的最大值和最小值(第1课时)
教学环节
|
教 学 内 容
|
设 计 意 图
|
一、创 设 情 境,铺 垫 导 入
|
1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数 的最大值与最小值.
如图,有一长80cm,宽60cm
的矩形不锈钢薄板,用此薄板折
成一个长方体无盖容器,要分别
过矩形四个顶点处各挖去一个
全等的小正方形,按加工要求,
长方体的高不小于10cm且不大于
20cm.设长方体的高为xcm,体积
为Vcm3.问x为多大时,V最大?
并求这个最大值.
解:由长方体的高为xcm,
可知其底面两边长分别是
(80-2x)cm,(60-2x)cm,(10≤x≤20).
所以体积V与高x有以下函数关系
V=(80-2x)(60-2x)x
=4(40-x)(30-x)x.
2.引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.
|
以实例引发思考,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,同时营造出宽松、和谐、积极主动的课堂氛围,在新旧知识的矛盾冲突中,激发起学生的探究热情.
实际问题中,函数和自变量x范围的设置,都紧扣本节课的核心:确定闭区间上的连续函数的最(大)值.
通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.提出问题后,引导学生发现,求所列函数的最大值是以前学习过的方法不能解决的,由此引出新课,使学生深感继续学习新知识的必要性,为进一步的研究作好铺垫.
|
教学环节
|
教 学 内 容
|
设 计 意 图
|
二、合 作 学 习,探 索 新 知
|
1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
问题1:如果是在开区间(a,b)上情况如何?
问题2:如果[a,b]上不连续一定还成立吗?
2.如图为连续函数f(x)的图象:
在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?
3.以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?
归纳:设函数f(x)在[a,b]上连续,在(a,b)内可导,求f (x)在[a,b]上的最大值与最小值的步骤如下:
(1)求f (x)在(a,b)内的极值;
(2)将f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值.
|
通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中.
对取得最大值最小值的两种可能位置的结论,在高中阶段不作证明,为使学生形成更深刻的印象,更好地进行发现,教学中通过改变区间位置,引导学生观察各种区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.
为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作.
在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力.深化对概念意义的理解:极值反映函数的一种局部性质,最值则反映函数的一种整体性质.
|
教学环节
|
教 学 内 容
|
设 计 意 图
|
二、合 作 学 习,探 索 新 知
|
求[a,b]上的连续函数f(x)的最大值和最小值
(1)求函数f(x)在开区间(a,b)内的极值;
(2)将f(x)的各极值与f(a)、 f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
例1 求函数y= x4-2 x2+5在区间[-2,2]上的最大值与最小值.
解: y′=4 x3-4x,
令y′=0,有4 x3-4x=0,解得:
x=-1,0,1
当x变化时,y′,y的变化情况如下表:
从上表可知,最大值是13,最小值是4.
思考:求函数f(x)在[a,b]上最值过程中,判断极值往往比较麻烦,我们有没有办法简化解题步骤?
设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值与最小值的步骤可以改为:
(1)求f(x)在(a,b)内导函数为零的点,并计算出其函数值;
(2)将f(x)的各导数值为零的点的函数值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
解法2:
y′=4 x3-4x
令y′=0,有4x3-4x=0,解得:
x=-1,0,1.
x=-1时,y=4,
x=0时,y=5,
x=1时,y=4.
又 x=-2时,y=13,
x=2时,y=13.
∴所求最大值是13,最小值是4.
课堂练习:
求下列函数在所给区间上的最大值与最小值:
(1)y=x-x3,x∈[0,2]
(2)y=x3+x2-x,x∈[-2,1]
|
探索出最大值和最小值存在的可能位置后,求法边呼之欲出,这时可以让学生给出求解步骤,既锻炼了他们的表达能力,更培养了他们的数学思维能力.
解决例1的方法并不唯一,还可以通过换元转化为学生熟知的二次函数问题;而这里利用新学的导数法求解,这种方法更具一般性,是本节课学习的重点.
“问起于疑,疑源于思”,数学最积极的成分是问题,提出问题并解决问题是数学教学的灵魂.思考题的目的是优化导数法求最大、最小值的解题过程,使得问题的解决更简单明快,更易于操作.这一环节旨在培养学生的探究意识及创新精神,提高学生分析和解决问题的能力.
对例题1用简化后的方法求解,便于学生将它与第一种解法形成对照,更容易被学生所接受.
课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握.同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯.对学生完成联系情况进行评价,使所有学生都体验到成功或得到鼓励,并据此调控教学.
|
教学环节
|
教 学 内 容
|
设 计 意 图
|
三、指 导 应 用,鼓 励 创 新
|
例2如图,有一长80cm,宽 60cm
的矩形不锈钢薄板,用此薄板折
成一个长方体无盖容器,要分别
过矩形四个顶点处各挖去一个
全等的小正方形,按加工要求,
长方体的高不小于10cm不大于
20cm,设长方体的高为xcm,体积
为Vcm3.问x为多大时,V最大?
并求这个最大值.
分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最小,可用本节课学习的导数法加以解决.
|
例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力.
|
四、归纳小结,反馈回授
|
课堂小结:
1.在闭区间[a,b]上连续的函数f(x)在 [a,b]上必有最大值与最小值;
2.求闭区间上连续函数的最值的方法与步骤;
3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定.
作业布置:P139 1、2、3
|
通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力.课外作业有利于教师发现教学中的不足,及时反馈调节.
|
相关阅读推荐:
› 函数的最值说课