鲁教版七年级下册数学说课稿
《不等式的基本性质》说课稿
我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、 教材分析
第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、 教学目标
知识目标:1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、 教学重点和难点
重点:掌握不等式的基本性质并能正确运用将不等式变形
难点:不等式基本性质3的运用
四、 教法分析
活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、 学法分析
“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
六、 教学过程分析
(一) 本节教学将按以下五个流程展开:
回顾思考,引入课题
创设问题情景,探索规律
尝试练习,应用新知
总结反思,获得升华
布置作业,深化巩固
(二) 教学过程
1、回顾思考,引入课题
观察下面两个推理,说出等式的基本性质
(1)∵a=b
∴a±3=b±3
a±(x2+2y)=b±(x2+2y)
(2)∵a=b
∴3a=3b
-a/4=-b/4
提出问题:那么不等式有没有类似的性质呢?引入课题。
[设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。]
2、创设问题情景,探索规律
问题1:在天平两侧的托盘中放有不同质量的砝码。
右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受)
[设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质]
问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?
如不等式7>4,-1<3不等式的两边都加5,都减5。不等号的方向改变吗?你能得出什么结论?再举几例试试,验证你所得的结论正确吗?(让学生先独立思考,后合作交流)
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果a<b,那么a+c<b+c,a-c<b-c
如果a>b,那么a+c>b+c,a-c>b-c(教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2<3,两边同乘以5,同除以5(即乘以1/5),同乘以0,同乘以-5,同除以-5。你能得出什么结论?再举几例试试,验证你所得的结论正确吗?
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0 ,那么ac>bc
如果a<b,c>0 ,那么ac<bc
如果a>b,c<0 ,那么ac<bc
如果a<b,c<0 ,那么ac>bc (教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)
[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]
3、尝试练习,应用新知
小黑板出示下列练习
一:孙悟空火眼金睛:
1、如果x+5>4,那么两边都 可得 x >-1
2、在-7<8 的两边都加上9可得 。
3、在5>-2 的两边都减去6可得 。
4、在-3>-4 的两边都乘以7可得 。
5、在-8<0 的两边都除以8 可得
二:你来决策:
如果a>b,那么
1、a-3 b-3(不等式性质 )
2、2a 2b(不等式性质 )
3、-3a -3b(不等式性质 )
4、a-b 0(不等式性质 )
[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]
出示例题
例 1 根据不等式的基本性质,把下列不等式化成 x<a或 x>a的形式:
(1) x -5 >-1 (2) - 2 x > 3
(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)
解 (1)根据不等式的性质1,两边都加上5得:
x-5+5 > - 1+5
即 x > 4
(2)根据不等式的性质3,两边都除以-2 得:
即 x <-3/2
练习:根据不等式的基本性质,把下列不等式化成 x<a或 x>a的形式:
(1) 3x >5 (4) -4 x < 3 - x
[设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]
4、总结反思,获得升华
让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。
[设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]
5、布置作业,深化巩固
必做作业:习题11.2第二题 推荐作业:课本中的试一试。
[设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]
七、 板书设计:
为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:
11.2 不等式的基本性质
不等式的基本性质
1: 如果a<b,那么,a+c<b+c,a –c<b-c 例:(1)x-5 >-1
如果a>b,那么 a+c>b+c,a-c>b-c (2)- 2 x> 3
2:如果a>b,c>0 ,那么ac>bc
如果a<b,c>0 ,那么ac<bc 解:
3:如果a>b,c<0,那么ac<bc
如果a<b,c<0,那么ac>bc
|
相关阅读推荐: