基本信息
知识点名称:
全等三角形的旋转变换
学科知识的类型及教学对象:
人民教育出版社 数学 八年级 上册P55第3题、P83第12题
(习题课)八年级
上课时间长度:
8分钟
教学目标
从全等三等形旋转变换的角度去寻求两个三角形全等的条件;
2.会用“相等的角加上中间的部分,得到新的一对相等的角”的解题技巧。
教学资源及环境
录屏软件(屏录专家);几何画板;PPT;
教学过程
例1:[原题课本P55第3题]
如图,CA=CA,∠1=∠2,BC=EC. 求证:AB=DE.
归纳:证明的关键点是:∠1=∠2,然后都加上中间的∠______,得到∠_____=∠_____
例2[原题课本P83第12题]
如图,△ ABD和△AEC都是等边三角形. 求证:BE=DC
证明的关键点:
∵∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC+∠BAC
即:∠DAC=∠EAB
练习1:如图AB=DB,BC=BE,要使△AEB≌△DCB, 则需增加的条件是 ( )
A. ∠A=∠D B. ∠E=∠C
C. ∠A=∠C D. ∠ABD=∠EBC
练习2:(例2变式)如图,△ ABD和△AEC都是等边三角形,求证:BE=DC.
设计理念及特色
1.将两道貌似不相关的题,通过“全等三角形的旋转变换”联系起来,指出它们的本质及证明的关键点其实是一样的。
2.用几何画板动态演示旋转变换,直观性强,更易理解。
3.归纳出证明的关键点:等量加(或减)等量仍是等量。
相关阅读推荐: