15.4.1 提公因式法(第1课时)说课稿
一、教材分析与设计思路
(一)课程标准
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用. 这节课是九年制义务教育课程标准实验教科书八年级下册第十五章第一节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
(二)教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标特制定如下教学目标:
知识与技能目标:
1.了解因式分解的概念,以及它与整式乘法的关系。
2.会用提公因式法进行因式分解.
数学思考:
1.经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.
2.分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法.
解决问题:
(1)培养学生的直觉思维,渗透化归的思想方法,培养学生的观察能力.
(2)从提取的公因式是一个单项式过渡到提取的公因式是多项式,进一步发展学生的类比和换元思想.
过程与方法:
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法,感受分解因式在解决相关问题中的作用。
情感态度与价值观:
在探索分解因式的方法的活动中,培养学生有条理地思考,表达,交流的能力,培养积极地进取意识,体会数学知识的内在含义与应用价值。
(三)教学重点
本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维。因此我将本课的学习重点确定为:能观察出多项式的公因式,并根据分配律把公因式提出来。
(四)教学难点
本节课的教学难点是:如何确定多项式的公因式以及提出公因式后的另外的一个因式.
(五)教法学法:
教法分析:针对初二年级学生的知识结构和心理特征,本节课选择独立思考——合作交流法.就是让学生共同讨论,并用类比推理的方法学习的方法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.
(六)设计思路
教学过程中设置以下几个环节:“生活情境,设置悬疑——复旧孕新,导入新课——师生互动,探究新知——自主小结,深化提高—布置作业,板书设计。”
二、学情分析与学生活动安排
(一)学情分析
1、初二学生性格开朗活泼,对新鲜事物较敏感,并且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。
2、初二学生对整式的运算比较熟悉,对互逆过程也有一定的感知。
3、初二学生已经具备了一定的自我学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究如何用提公因式法分解因式。
(二)学生活动安排
活动1:生活情境,设置悬疑
设置悬疑,以问题引入能引起学生的学习兴趣,符合学生的认知规律。使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归。
活动2:探索因式分解的概念
因式分解的概念类同于因数分解的概念,借助于学生已有的整式乘法的基础,给学生提供一些问题背景,同时给学生留有充分探索的空间,。这个环节围绕几个问题展开,在积极的状态下,用类比的方法,找到新知生长点,把数的有关知识正迁移到式,由学生自己给出因式分解的名称,引出课题,显得顺理成章。
活动3: 师生互动,探究新知
学生理解提公因式法并能熟练地运用提公因式法分解因式.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.
活动4:小结与作业。
回顾反思,进一步体会因式分解的提公因式法巩固所学知识并能自我检测。
三、教学过程
(一)生活情境,设置悬疑
如图,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?
列式:3.7×3.8+3.7×6.2 (学生思考后列式)
有简便算法吗?
原式=3.7×(3.8+6.2)=3.7×10=37(m2)
在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb
可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(设计意图:设置悬疑,无疑对本节课的学习创设了良好的情绪状态,以问题引入能引起学生的学习兴趣,符合学生的认知规律。使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归。)
(二)复旧孕新,导入新课
1.做一做
计算下列各题:
m(a+b+c)=__________;(2)(a+b)(a-b)=__________;(3)(a+b)²= __________
根据上面的计算你会做下面的填空吗?
1.ma+mb+mc=__________;(2)a²-b²=__________;(3)a²+2ab+b²=__________
2.引导观察
(1)观察以上两组题目有什么不同点?有什么联系?
(2)你能根据上面的分析说出什么是因式分解吗?
像这种把一个多项式化成几个整式的积的形式的变形叫做把这个 多项式因式分解,也叫把这个多项式分解因式.
可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维.
(三)师生互动,探究新知
1.观察归纳,引出新知
让学生观察多项式:ma+mb(让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知.)
各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。(设计意图:把主动权交给学生,尽量让他们自己说,也可尝试让他们取名,使他们体验到成功的喜悦)
注意:公因式是一个多项式中每一项都含有的相同的因式。
又如:b是多项式ab-b2各项的公因式,2xy是多项式4x2y-6xy2z各项的公因式
让学生说出公因式,学生可能会说是2或者是 x 、 y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法
2. 独立练习,巩固新知
指出下列各多项式中各项的公因式(以抢答的形式)
⑴ax+ay-a (a)
⑵5x2y3-10x2y (5x2y)
⑶24abc-9a2b2 (3ab)
⑷m2n+mn2 (mn)
⑸x(x-y)2-y(x-y) (x-y)(设计意图:学生自控能力不强,上课时注意力易分散,注意力集中时间较短,对数学概念的理解肤浅,对规律的应用生搬硬套,针对学生的这种特点,教师在教学中创设抢答,引起学生兴趣,积极参与教学进程,争做课堂的主人)
显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可以由学生讨论总结,然后教师进行归纳)
⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)
⑵字母取各项的相同字母,且各字母的指数取最低次幂(相同因式的最低次幂)
定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。
提公因式法分解因式的依据:乘法的分配律。
3.例题学习,深化新知
例1 分解因式:
1)-5a²+25a (2) 3a²-9ab (3)3pq³+15p³q
讨论归纳提公因式法的一般步骤;如何检验因式分解的正确性。(设计意图:学生在探究、交流中能获得一些初步概念和技能,但真正达到掌握知识与技能,还需要教师示范,学生模仿性学习,经过规范化的示范,就能逐步培养学生严谨的思维,正确的计算能力)
例2 分解因式:
(1)-a²b²+2abc²-3abc (2) 4x²-8ax+2x (3)-3ab+6abx-9aby
先让学生做,教师下去观察并选择有代表性的解答。
教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都是以后学生练习中的常犯错误,接着由教师总结.这样做比教师直接给出可能会更有效。
易出现的错误:(1)符号;(2)项数。(设计意图:先让学生自己动手做,暴露他们的错误,然后再进行点评,加深他们的记忆)
注意:提公因式后的项数应与原多项式的项数一样,这样可检查是否漏项。
归纳:“首项为负常提负,各项有公先提公”。
课堂练习:1、-4a3+16a2-18a 2、3x2-6xy+x
例3 探索: 2(a-b)2-a+b能分解因式吗?
把问题先交给学生进行小组讨论(四人一小组),鼓励学生进行交流探索。可能有学生会提出好象没有公因式?此时教师可以适当地点拨一下。比如可降低难度改为:2(a-b)2-(a-b),然后启发学生如何转化?从而解决问题。
追问:2(a-b)2-(b-a)3能分解因式呢?
让学生积极思考,讨论回答。(设计意图:由学生各述己见,教师不加评定,然后集体总结学生思维中的闪光点;让学生从合作中去感受群体合作的力量,体验展示自我的愉悦。此例培养学生分析问题的能力,优化学生思维品质,让学生区分方法的差异)
注:n 为偶数时(a-b)n=(b-a)n n 为奇数时(a-b)n= -(b-a)n
4. 强化训练,掌握新知
把下列各式分解因式
⑴2ax+2ay ⑵x2y-xy2 ⑶a3+2a2-a ⑷2mn-6m2n2+14m3n3 ⑸-ab2c+2a2b-5ac2
⑹x(a+b)-y(a+b) ⑺a(x-a)+b(a-x)-c(x-a)
5. 变式训练,扩展新知
A组:将下列各式分解因式
⑴3(a-b)2-6a+6b ⑵-0.01x3y+o.2x2yz2
⑶利用因式分解计算
22×3.145+53×3.145+31.45×2.5(设计意图:学习的最终目的是应用,让学生体验运用新知解决问题的喜悦。)
B组:
分解因式xa-xa-1+xa-2(设计意图:供学有余力的学生练习,让不同层次的学生都能得到发展。)
(四)自主小结,深化提高
谈谈本节课学习的收获与体会:
这节课,我的收获是……
我最感兴趣的地方是……
我想进一步研究的问题是……(设计意图:落实教师主导、学生主体地位。合作小结既有助于训练学生概括归纳能力,又有助于学生在归纳过程中把所学的知识条理化、系统化。培养学生反思自己学习过程的意识,让学生在思考问题的过程中自己把整节内容进行梳理,最后老师补充。)
1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).
这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.
2.提公因式法分解因式,关键在于观察、发现多项式的公因式.
3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;
(2)取相同的字母,字母的指数取较低的;
(3)取相同的多项式,多项式的指数取较低的.
(4)所有这些因式的乘积即为公因式.
4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.
可以用四句顺口溜来总结记忆 用提公因式法分解因式的技巧.
各项有“公”先提“公”,
首项有负常提负.
某项提出莫漏1.
括号里面分到“底”.
(五)分层作业,发展个性
必做题:1.课本第170页第1题
2.练习册相关部分
选做题:问32006-4×32005+10×32004能否被7整除?
(设计意图:分层作业,使不同层次的学生都能有所收获)
(六)板书设计
四、教学建议
建议一: 在新课程理念下,我们应该倡导新型的教学形式——自主探究式的教学方式,即把学生置于主体地位,达到培养学生的创新能力的目的,教师在教学过程中是善于走进学生心灵的真诚的合作者.学生由于主体性得到了体现,自然会产生求知和探究的欲望,会把学习当作乐事,最终达到学会、会学和乐学的境地;在合作中,教师与学生的关系变成了“指导——参与”的关系.
建议二:落实好两个概念
1、因式分解的概念。因式分解与整式运算是不同的整式变形,概念的引人应着重引导学生观察变形的特点,理解变形的意义,还应随时回忆这一概念、运用这一概念、巩固这个概念,而不要希望一蹴而就。
2、公因式的概念的理解。
类比公因数理解多项式中的公因式的概念,它是学习提公因式法的关键。
教学时,应让学生认识到,一个多项式中各项都含有的公共的因式,才叫公因式。
公因式找寻的方法可从:系数,相同字母,相同指数的字母最低值入手。
公因式也可以是多项式因式。
建议三:用各种方法因式分解时应重视培养学生的观察能力,在教学中应给学生以足够的时间观察,并充分交流观察的结果,汇报观察结果后而采取对策,而不应让学生模仿例题,应在实践中培养学生观察能力的同时培养学生主动探索的精神。
其它建议:
1、数学能力及数学思想方法的培养在初中数学教材中尽管没有专门章节进行训练,但始终渗透在整个初中数学的教学过程中.由于一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识,它是初中数学一个重要的数学思想.
2、运用类比和换元的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,没有斧凿的痕迹.因此数学思想的教学应与整个表层知识的讲授融为一体.本节中换元的思想起着重要作用。例如,提取公因式法分解因式中, m既可以表示单项式,又可以表示多项式;用公式法分解因式,公式中的a,b也可以表示任意一个代数式.教学中教师应有意识进行渗透,使换元思想逐步成为学生在恒等变形中的有力工具,为今后的学习打下基础。
3、注重分层教学。对于学有余力的学生,在确保完成《数学课程标准》规定的目标的基础上,可以适当增加一些富有挑战性的题目,扩大因式分解的技巧与能力。
4、提高学生兴趣。兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。若能利用短短几分钟时间,在刚开始就激发学生的兴趣,这正是老师追求的一个目标。何况,初二学生在学习过程中,能激起他们积极地、主动地去探讨问题,这是学习成功地一个保障。
相关阅读推荐: